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Abstract

In this paper, we present a novel framework to detect line
segments in man-made environments. Specifically, we pro-
pose to describe junctions, line segments and relationships
between them with a simple graph, which is more structured
and informative than end-point representation used in ex-
isting line segment detection methods. In order to extract
a line segment graph from an image, we further introduce
the PPGNet, a convolutional neural network that directly
infers a graph from an image. We evaluate our method on
published benchmarks including York Urban and Wireframe
datasets. The results demonstrate that our method achieves
satisfactory performance and generalizes well on all the
benchmarks. The source code of our work is available at
https://github.com/svip-lab/PPGNet.

1. Introduction

Retrieving 3D information from 2D images has long been
a fundamental problem in computer vision. The feasibility
of conventional methods based on local feature detection,
matching and tracking (e.g., corners, edges, SIFT features,
and patches) has been proved. However, modern applications,
which involve interaction between autonomous agents and
man-made physical environments, have presented more com-
plex challenges. On the one hand, man-made environments
often contain abundant homogeneous surfaces and highly
repeated patterns, which introduces difficulties for feature
matching and tracking. On the other hand, for some appli-
cations (e.g., visual odometry), of which the performance
highly depends on the geometric primitives presenting in dif-
ferent views, the choice of such primitives (e.g., points, lines
segments, or other structures) becomes critical: different
primitives provide distinct sets of geometric information.

The prior assumption about a spacial structure like Man-
hattan World [7, 11, 38] or room topology [24, 57, 60] could
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significantly benefit the 3D reconstruction, but they are often
violated in real man-made environments. Instead, common
junctions and line segments are capable of delivering impor-
tant geometric information without dependency to any prior
assumption. For extensive tasks relevant to 3D vision, such
as camera calibration [10,43,56], matching across views [44]
and 3D reconstruction [20,37,56] , edges have demonstrated
more robustness to lighting changes and preserve more infor-
mation than points. Several recent works [22, 55, 60] show
that line segments could largely facilitate 3D modeling of
indoor scenes.

Traditional line segment detection algorithms [1,2,27,49]
generally start from edge detection, followed by merging
procedure and optionally some refinement techniques. How-
ever, such approaches are usually sensitive to changes in
scale and illumination, since they merely depend on the local
features. Additionally, some geometrically informative lines,
such as intersections between two homochromatic walls, of-
ten have low local edge responses, thus tend to be ignored
by such methods. On contrast, a human can easily recognize
such visually obscure intersections through global semantic
inference.

The recent success of deep learning has shown the de-
sirable capability of image understanding, such as image
classification [19,23,47,48], object detection [13,14,17,40],
and semantic segmentation [26, 41]. On the other hand, deep
architectures are also effective in low-level tasks, such as
contour detection [45] and super-resolution [9]. [21] is a
pioneer work of extracting wireframe in man-made scenes
with a deep architecture, for human-level perception of scene
geometry. Their proposed network outputs pixel-wise junc-
tion confidence and directions together with a line heatmap,
followed by a post-processing algorithm merging them to
generate a parameterized presentation of line segments. As
introduced in the literature, the conception of the wireframe
is a small subset of common line segments and junctions,
which is practically defined by their dataset annotation. Con-
sidering that line segments outside the wireframe subset also
contain strong geometrical information, and line segment
detection itself is still a challenging problem in computer
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vision, we focus on robust detection of general line segments.
In this paper, we propose to describe junctions, line seg-

ments and the relationship between them with a simple graph.
In our graph representation, the nodes stand for vertices and
the edges stand for the connectivities between junction pairs,
i.e. the line segments. The graph is fully capable of describ-
ing any complex connections between junctions. Following
this, we introduce the PPGNet, a novel CNN based archi-
tecture which directly infers point-pair graph from given
images. Specifically, we firstly use a backbone network for
feature extraction, which is utilized to detect junctions. Then,
we construct line segment candidate for each junction pair,
and reuse the extracted feature to infer the connectivity of
the line segment candidate. Consequently, all junctions and
their connectivities are formed as a graph, which describes
all line segments in the input image. It should be noted that
our proposed network can predict a graph directly from a
given RGB image .

In order to train our proposed PPGNet, we need a dataset
with annotated junctions as well as connectivity between
every possible junction pair. However, annotations in existing
datasets often ignore some overlapped line segments, thus
can not be directly used to train our network. To fix this,
we generate more informative graph-based annotations for
existing datasets. Further, we also introduce a new large
scale line segment dataset containing fully annotated indoor
and outdoor samples, which fills the gap of current datasets
that are either small in size for training deep architectures or
lacking indoor/outdoor samples.

The contribution of this work can be summarized as fol-
low: First, we introduce the new graph-based representation
of line segments against commonly used endpoint represen-
tation, which is capable to describe all possible line segments
in a more structured and informative way; second, we design
a novel deep architecture that directly infers the line segment
graph from the input image; third, we build a new dataset
which covers both indoor and outdoor scenes with fully an-
notated line segments; fourth, results demonstrate that our
method achieves satisfactory performance and generalizes
well on multiple datasets.

2. Related Works

2.1. Line segment detection

The mainstream pipeline of hand-crafted line segment
detector generally consists of local feature extraction, pixel
grouping, and optional refinement. These methods usually
start from detecting pixels with high local gradient and/or
edge response and then group them into line segments
through iterative growing [35], co-linear clustering [27],
Hough domain accumulation [12,30,54] or Markov chain [2],
etc. The line segments are optionally refined with false de-
tection control based on the Helmholtz principle [1, 49], as

well as fragment merging and endpoint relocation [4].

The hand-crafted line segment detectors highly depend
on carefully designated parameters. Even though some of
them are parameter-free, the results still are highly sensitive
to the choice of threshold. In a recent research [21], a CNN
including two branches is proposed to parse a junction map
and a line heatmap from an image, which are then merged
into a set of line segments. This learning-based approach
outperforms the hand-crafted methods with a large margin.
Nonetheless, there is not a framework that directly outputs a
parameterized presentation of line segments by far.

2.2. Junction detection

Although junction detection has been studied for long
[15, 42], it remains a challenging problem. A typical work
is to compute local cornerness based on so-called Harris
matrix [16], which is, however, sensitive to scale and local-
ization. Some works focus on contour curvature or continu-
ation for detecting junctions [3, 5, 32]. Other works exploit
the consistency between textures and gradient-based [6, 46]
or pattern-based [36, 51] templates as an effective cue for
junction detection.

According to a psychophysical analysis, it is difficult to
recognize junctions without context information in a large
enough area, even for humans [31]. In this direction, [28] at-
tains robust edge and junction detection by combining local
cues (e.g., lightness, color and gradient) with a global prob-
ability of boundary (gPb) detector, which is learned from
human-annotated data. Benefiting from the large receptive
field of the deep neural network, [21] achieves state of the
art performance on junction detection.

2.3. CNN-based Graph Inference

A convolutional neural network is capable of inferring
graphs from images. In [34], the multi-person pose estima-
tion problem is resolved by considering each person as a
graph and grouping the body joints with associative embed-
ding. As a more general work, a CNN is trained to detect
all the objects and relationships between them in an image
by means of associative embedding [33]. The objects and
relationships in a scene graph can be further refined with
a gated recurrent unit (GRU) [53]. However, their network
only outputs nodes and edges, together with embedding that
associates edges to nodes, therefore extra steps are required
to construct the final graph. Furthermore, their framework
cannot handle arbitrary overlapped edges. In contrast, our
network can infer an arbitrary simple graph parameterized
by nodes and an adjacency matrix directly from the input.



Figure 1. Demonstraton of juncton-line graph representaton G = {V,E}. (a) an sample image patch with 10 junctons (V ); (b) the graph
which describes the connectvity of all junctons (G); (c) the adjacency matrix of all junctons (E, black means the junction pair is connected).

3. PPGNet for Line Segment Detection

3.1. Junction-line Graph Representation

Here, we consider the problem of detecting line segments
directly from an RGB image. We propose to use a simple
graph Gn = {V n, En} to represent all line segments in a
given image Xn (a sample indexed by n in a dataset), of
which V n stands for the set of junctions andEn for the set of
connectivities between any junction pairs. We now transfer
the original line segment detection problem into the graph
inference problem. In our implementation, V n and En are
parameterized using an ordered list of junctions Jn and an
adjacency matrix An, respectively. Hence, each element in
Jn is the coordinate of the junction and the entry An

ij in the
i-th row and j-th column of matrix An equals one only if
junction pair Jn

i and Jn
j forms a line segment (see Fig.1).

The graph representation is more structured than endpoint
representation for line segments. Line segments that share
the same endpoints only add more ones to the adjacency
matrix without introducing extra terms. Besides, graph rep-
resentation is also much more informative. Connectivities
between junctions are fully described in a combinational way
(Fig.2) and both longer line segments and any inner shorter
ones are depicted by the graph, which benefits the selection
of befitting line segments from the graph in accordance with
specific applications.

In this work, we use a deep neural network to learn the
mapping from RGB image X to graph G. Due to the fact
that G fully describes all line segments in X and can be
transferred to endpoint representation with minor efforts, our
method is a unified solution, although containing multiple
stages, to settle line segment detection problem.

3.2. PPGNet

Motivated by Faster R-CNN [40], we propose a two-
staged framework that detects junction points at the first
stage and then identifies the connectivities between all point

Figure 2. Some cases where junctions are densely connected. The
connectivities among junctions, as indicated by red dashed curves,
can be more completely identified in graph representation than
end-point representation.

pairs at the second stage. The proposed PPGNet, as illus-
trated in Fig.3, comprises four parts: (i) a convolutional back-
bone architecture for feature extraction over the entire input
image, (ii) the Junction Detection Module (JDM), (iii) the
Line Segment Alignment Module (LSAM) which extracts
a feature tensor for the line segment candidate defined by
a pair of detected junctions, and (iv) the Adjacency Matrix
Inference Module (AMIM) which detects the connectivity
between each junction pair. Given an image, our network
predicts both junction locations and their connectivities rep-
resented by an adjacency matrix.

3.2.1 Backbone Network

We use the semantic segmentation network implemented by
CSAIL [52, 58, 59] as our backbone network, which consists
of a dilated ResNet-50 encoder and a decoder with pyramid
pooling, except for the last convolution layer, of which the
number of output channels C is changed to be 256 instead of



Figure 3. The PPGNet architecture. First, the backbone computes shared features of size C × H
4
× W

4
for Junction detection and adjacency

matrix inference. Second, the Junction Detection Module output a list of N junctions. Third, each junction pair is formed as two line segment
candidates of different directions, over which features are evenly sampled into two feature matrix of size C × L. After that, we apply 1D
convolution over each feature matrix, which outputs a feature vector of size C. Fourth, each feature vector is used by the Adjacency Matrix
Inference Module to infer the connectivity of the corresponding junction pairs.

1. 1 For an input image of sizeH×W , the backbone network
extracts a 256-channel feature map of size H/4×W/4.

3.2.2 Junction Detection Module

The JDM extracts junctions over the input image represented
by their coordinates. Unlike commonly used anchor based
detection methods such as R-CNN [40], YOLO [39] or
SSD [25], the JDM first regresses a junction heatmap, then
applies Local Maximum Filter (LMF) to get coordinates
where junction response is higher than its eight neighbors.
Non-maximum Suppression (NMS) is also used to avoid
multiple detections of the same junctions. Unlike that in
detection methods, the NMS in JDM is implemented by a
hierarchical clustering using the single linkage algorithm,
where the clusters are formed by the inconsistency method
with a cutoff threshold (3 pixels in all our experiments).

In detail, the JDM first regresses junction heatmap from
the feature extracted by the backbone network through a
convolutional architecture, which comprises two conv3x3-
bn-relu blocks followed by a conv1x1 layer with sigmoid
activation. Then it identifies all points in the heatmap where
junction responses are higher than a threshold τ and are the
highest among 8-neighbors. After that, the detected points
are clustered into groups, within which the distance between
arbitrary two points is no greater than ε, and all the points
with the highest junction responses in their groups are pre-
dicted as junction points. We use ε = 3 pixels in all our

1The details about the backbone can be found in the Github page
https://github.com/CSAILVision/
semantic-segmentation-pytorch

experiments.

3.2.3 Line Segment Alignment Module

Given two junctions and a feature map, the LSAM samples
the feature map along the line segment candidate defined by
the junction pair, and extracts a fixed-length feature vector
from the feature map. LSAM works in a way similar as ROI
Align Module [17], except that LSAM aligns feature vectors
instead of patches.

For each junction pair and feature map of an image, the
LSAM generates a feature tensor of size C × L, where C
is the number of channels of feature map and L is the spa-
tial length of line segment feature. Specifically, LSAM first
generates L equidistant sampling points from the starting
point to the end point of the junction pair, then uses bilinear
interpolation to sample pixel value for each point on the
feature map. In our main model, L is set to be 64, so that
each junction pair yields a feature tensor of size C × 64 for
connectivity inference.

3.2.4 Adjacency Matrix Inference Module

The AMIM predicts the connectivity of every combination
of junction pairs within an image. It takes the features for all
line segment candidates provided by the LSAM, and uses a
convolutional structure to predict the connection probability
for each candidate.

Given K junctions predicted by JDM, AMIM generates
a K ×K adjacency matrix A, by which the line segment de-
tection problem is turned into a binary classification problem
of whether two junctions are connected. For every possible
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junction pair, two feature vectors of a line segment corre-
sponding to different junction orders are extracted by LSAM,
which are then fed into three cascaded conv2d-gn-relu blocks,
where gn represents the Group Normalization Layer [50].
The kernel sizes, stride size and padding size of the three
convolution layers are 8, 4, 2, respectively. After that, a sin-
gle conv2d-sigmoid block is used to get the connectivity
confidence of the junction pair in different orders, of which
the lowest becomes the final confidence for the junction pair.
Intuitively, this processing acts as an ‘and’ logic to ensure
that a junction pair is connected regardless of the order of
feature concatenation.

In practice, because JDM can detect an arbitrary number
of junctions, AMIM predicts one block of matrix A of fixed
size 64×64 at a time and runs multiple times to get the whole
adjacency matrix. Furthermore, as all possible connectivities
between all junction pairs are inspected in AMIM, which
causes anO(n2) complexity, it is impractical to process a too
large number of junctions in AMIM. Due to an observation
that JDM tends to assign a higher score to the junctions
associated with more line segments, we only choose the first
512 junctions with the highest responses on the heatmap
when more than 512 junctions are outputted by JDM. In
our experiments, it takes about 0.9s to process an image
containing 512 junctions with a Tesla P40 GPU.

3.2.5 Loss Function

Both junction heatmap and adjacency matrix are supervised
using binary cross entropy loss, and the final loss is the
weighted sum of two losses, i.e.

L = λjuncLjunc + λadjLadj

Ljunc = −
∑

i
H̃i logHi + (1− H̃i) log (1−Hi)

Ladj = −
∑

i
Ãi logAi + (1− Ãi) log (1−Ai)

where H̃i and Hi are the elements of prediction and ground
truth of junctions, respectively, and Ãi and Ai are the ele-
ments of prediction and ground truth of the adjacency matrix,
respectively.

3.3. Training and Evaluating Details

All modules are jointly optimized using Stochastic Gra-
dient Decent (SGD), with lr = 0.2, weight decay =
5 × 10−4, and momentum = 0.9, except for all normal-
ization layers, of which weight decay is set to zero. The
backbone network is initialized with parameters pretrained
for segmentation task on the MIT ADE20K dataset, and
other modules are initialized with kaiming initialization [18],
as the common practice. During the training phase, AMIM
infers adjacency matrix for ground truth junctions instead

of junctions predicted by JDM because we do not have cor-
responding ground truth adjacency matrix for supervision.
During evaluating phase, junctions and adjacency matrix are
jointly estimated by our PPGNet.

4. Experiments and Results

We conduct experiments to evaluate the performance of
our proposed approach and compare it with several SOTA
methods. Our model is implemented with the Pytorch frame-
work trained with four Tesla M40 GPUs.

4.1. Datasets and Evaluation Metrics

Experimental Datasets So far as we know, there exist
two line segment datasets namely Wireframe [21] and York
Urban [8]. However, the former only has wireframes line
segments in mostly indoor scenes annotated, while the later,
though containing both indoor and outdoor scenes, is small
in size (102 samples), and only has Manhattan lines labeled.
In order to validate the capability of our framework to detect
general line segments for new indoor and outdoor scenes,
we build a new line segment dataset, which consists of 1,378
indoor images and 2,534 outdoor images, together with care-
fully labeled line segments.

For the indoor part, we capture the images with resolution
900×1200 using a camera array that comprises seven GoPro
cameras. For the outdoor part, we take aerial videos of our
campus with a 4K camera equipped on a DJI UAV, and
extract frames with high quality at the interval of at least two
seconds. Since the resolution of original videos is too large
for labeling and training neural networks, we further crop
each frame into four 2048 ∗ 1080 images.

All the line segments in both indoor and outdoor part
are annotated following the protocols that any visible line
segments that are longer than 10% of the image diagonal
and occluded by less than 10% of their length is labeled.
Every sample is annotated by one volunteer and then double
checked by another. Different from the conception of wire-
frame [21] or Manhattan lines, the labeled line segments in
our dataset only need to be visible and geometrically infor-
mative. Table 1 summarizes the statistics of existing datasets
and ours.

Data Preprocessing In order to learn the mapping from
image to line segment graph, the complete description of
connectivities among all junctions is required. However, all
existing datasets use endpoints to represent line segments,
where both junctions and connectivities can be missing in
some cases. Therefore, we introduce the data preparation
scheme to convert each annotation in the original datasets
into their graph representation version, which can be outlined
as follows.



Table 1. Dataset statistics
# images resolution # avg. junc. # avg. lines scenes\line types

Wireframe 5462 480 ∗ 405(avg.) 150 75 indoor\wireframe
York Urban 102 640 ∗ 480 209 119 both\Manhattan
Ours-indoor 1378 900 ∗ 1200 67 41 indoor\general
Ours-outdoor 2534 2048 ∗ 1080 537 311 outdoor\general

Figure 4. Qualitative evaluation of our line segment detection method. 1st row: ground truth (Wireframe); 2nd row: prediction (Wireframe);
3rd row: ground truth (York Urban); 4th row: prediction (York Urban); 5th row: ground truth (Our dataset); 6th row: prediction (Our dataset)

1. Remove isolate junctions associated with no line seg-
ments.

2. Find the longest line segments by searching the furthest
endpoint junctions for every line segment, then mark
all junctions in a longest line segment as connected.
Note that the searching is not exactly along the line, but
within a belt around the line, due to possible annotation
error.

3. Remove a line segment if all its inner junctions is a
subset of those of another line segment. The inner junc-
tions of a line segment are determined by their distance
to the line segment.

4. Refine each line segment by re-fitting it to its inner
junctions.

5. Refine all of the junctions that are the intersections
of two or more line segments by solving the linear
equations imposed by the corresponding line segments.

6. Retrieve possibly missing junctions by finding all inter-
sections of all line segment pairs.

7. Construct the final line segment graph, which is param-
eterized by an ordered list of junctions and an adjacency
matrix.

Generally, the data preparation scheme tries to correct



some bad annotations and to supplement possibly missing
junctions and connectivities. We refer readers to our released
code for the details of the scheme.

Evaluation Metric We quantitatively evaluate the meth-
ods using recall and precision as described in [21,28,29,51].
The recall is the fraction of true line segment pixels that are
detected, whereas the precision is the fraction of detected
line segment pixels that are indeed true positive. Specifically,
they are calculated as follows:

Recall =̇ |G ∩Q|/|G|, Precision =̇ |G ∩Q|/|Q|,

where G denotes the ground truth and Q denotes the predic-
tion. Note that, following the protocols of previous works
[28, 29, 51], the particular measures of recall and precision
allow for some small tolerance in the localization of line
segment pixels. The tolerance in our experiments is set to be
0.01 of the image diagonal, which is the same as [21].

4.2. Performance evaluation

In order to evaluate the performance of our framework,
we compared the performance of our method with the state
of the art (LSD [49], MCMLSD [2] and wireframe parser
of Huang et al.. [21]) upon three experiment settings: (a)
training and testing on Wireframe dataset using the standard
splits; (b) training on Wireframe dataset and testing on the
York-Urban dataset; (c) training on Wireframe dataset and
testing on our dataset. Since the Wireframe and York Urban
datasets are released benchmarks, we do quantitative com-
parison under the setting (a) and (b). Qualitative evaluation
is done under the third setting to observe the generalizing
capability between different data distribution.

Quantitative Comparison For our PPGNet, we conduct
two experiments under setting (a) and (b) where (i) AMIM
uses junctions predicted by JDM (marked as PPGNet) and
where (ii) AMIM uses ground truth junctions to predict line
segments (marked as PPGNet*). We include the second
experiment for the reason that both the two benchmarks only
have a subset of line segments annotated, i.e. wireframes
and Manhattan lines, but our framework is for general line
segment detection. Only with ground truth junctions can our
framework understand which type of junctions should be
considered.

As one can see, though our PPGNet shows worse per-
formance compared to [21] in experiment(i), it achieves
superior performance in experiment(ii). In a comprehensive
view, our method achieves satisfactory performance.

Qualitative Analysis Fig. 4 illustrates visualized results
of line segment detection of our method on several (random)
samples. It can be seen that our method is capable to robustly

(a) (b)

Figure 5. Precision-Recall curves of our PPGNet and state of the
art methods evaluated on (a) Wireframe dataset and (b) York-
Urban dataset. For PPGNet and PPGNet*, we set the thresh-
old for JDM to 0.25, and vary the threshold for AMIM in
[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7].

detect the line segments in complicated environments, and
generalize well on datasets on which it has not been trained.

In order to qualitatively compare the performance of our
method with that of wireframe parser [21] on general line
segments, we refine the annotations of the test split in Wire-
frame dataset by adding the missing general line segments
apart from wireframes. Fig.6 shows the visualized results on
some randomly picked samples for PPGNet and the method
in [21]. It can be observed that our method is capable of re-
trieving more abundant line segment information than [21].

We also noticed that out model fails in some cases, as
shown in Fig. 7. There are two typical cases: (1) for small
boxes in an image, our model tends to predict the diago-
nal junctions as connected and (2) for close co-linear line
segments, our model tends to ignore the gaps and predict
all junctions as connected. These cases may be caused by
the sampling procedure in AMIM. For case (1), the bilinear
sampling may introduce nearby features around sampled
locations. Hence the nearby junctions may interfere with
connectivity prediction of current junction. On the other
hand, case (2) may happen when few or no sampling points
fall in the gaps between those co-linear line segments, which
prevents AMIM from recognizing the discontinuity.

4.3. Junction Threshold of JDM

In our framework, the AMIM predict connectivities of
junctions detected by JDM, for which the threshold τ has a
fundamental effect on the performance. We comprehensively
compare the performance under different choices of the value
for τ . It can be seen in Fig.8 that τ ∈ [0.2, 0.3] lead to a
better precision-recall curves. According to the quantitative
evaluation in AUC, τ = 0.25 is slightly better than τ = 0.2
and τ = 0.3.

4.4. Sampling Rate of LSAM

LSAM predicts the connectivity of junction pairs from the
spatially sampled features between the two junctions. There-



Figure 6. Qualitative results on the refined Wireframe dataset. 1st row: the ground truth; 2nd row: results of the method proposed in [21]; 3rd
row:results of PPGNet

(a) (b)

Figure 7. Failure cases: (a) image samples that contain small rect-
angulars; (b) image samples that contain very close co-linear line
segments.
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Figure 8. Precision-recall curves of different choices JDM threshold
τ

fore the sampling rate of LSAM has a fundamental effect on

the performance of our model. In order to analyze the effect
of sampling rate on performance, we conduct experiments
in which different sampling rate is used in LSAM. The re-
sults are shown in Fig. 9.(a), we can see that LSAM benefits
from higher sampling rates. However, higher sampling rates
also introduce extra memory usage and computational cost.
Hence one should consider both performance and efficiency
requirements for different applications when choosing the
sampling rate.

As an extreme case, the sampling rate equals 2 means that
only features at the location of junction pairs are sampled.
In this case, LSAM suffers from insufficient information
to determine the connectivities of junction pairs. Fig.9.(a)
shows the typical results when only two points are sampled.
As one can see, LSAM fails to recognize gaps between
two co-linear line segments and directions of line segments
starting from the same junctions.
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Figure 9. Illustrations of (a) precision-recall curves with different
sampling rate of LSAM; (b) example prediction when only junction
features are pooled.



5. Conclusion and Disscusion
In this paper, we propose to use graphs to represent all

line segments in a given image and introduce the PPGNet,
an multi-staged deep architecture that directly infers a graph
directly from an image. Our method achieves satisfactory
performance on multiple public benchmarks and shows re-
markable generalization ability.

There is still room for improvement in our framework. For
example, currently the LSAM predicts connectivities for all
possible line segments, which yields the time complexity of
O(n2). Maybe one could filter some line segment candidates
according to the specific applications, but there may exists a
better way to further reduce the computational cost.

On the other hand, PPGNet itself is a general framework
to infer a graph from an image. In principle, PPGNet could
also be used to solve other problems that need to detect
visual parts and their spatial connections. Human pose esti-
mation is a typical example of such problems, and we are
interested in exploiting possible applications of PPGNet for
such problems in future work.
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