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Abstract

This report aims to study how to train a deep learning
based classifier when only large scale noisy dataset is avail-
able. In order to overcome dataset noise, a series of train-
ing as well as testing methods are proposed, including boot-
strapping method and ensemble method. Result shows that
proposed methods achieve remarkable performance.

1. Introduction

The recent success of deep learning has shown that a
deep architecture in conjunction with abundant quantities
of labeled training data is the most promising approach for
most vision tasks. However, annotating a large-scale dataset
for training such deep neural networks is costly and time-
consuming, even with the availability of scalable crowd-
sourcing platforms like Amazons Mechanical Turk. As a
result, there are relatively few public large-scale datasets
(e.g., ImageNet and Places2) from which it is possible to
learn generic visual representations from scratch.

Thus, it is unsurprising that there is continued interest in
developing novel deep learning systems that train on low-
cost data for image and video recognition. Among different
solutions, crawling data from Internet and using the web
as a source of supervision for learning deep representations
has shown promising performance for a variety of impor-
tant computer vision applications. However, the datasets
and tasks differ in various ways, which makes it difficult
to fairly evaluate different solutions, and identify the key
issues when learning from web data.

We utilize a large scale web image dataset named Web-
Vision for visual understanding by learning from web data.
The datasets consists of 2.4 million of web images crawled
from Interenet for 1,000 visual concepts. A lot of tech-
nology including bootstrapping, robust loss and dataset re-
sampling are used to overcome label noise and dataset bias
problem. Result shows that our approach competitive clas-

sification accuracy.

2. Related Work
There have been plenty of works about classification

with noisy training dataset. Generally, approaches can be
concluded as follows:

• Dataset Cleaning. A simple method to deal with label
noise is to remove instances that appear to be misla-
belled. Many such cleansing methods exist in the label
noise literature. Similarly to outlier detection [3, 34]
and anomaly detection [34], one can e.g. simply use
methods based on ad hoc measures of anomaly and re-
move instances that are above a given threshold [74].
One can also remove instances that disproportionately
increase the model complexity [23, 24].

Model predictions may also be used to filter in-
stances [24, 44] a simple heuristic is to remove train-
ing instances that are misclassified by a classifier [37],
although this may remove too many instances [60, 31].
Iterative [38] and local model-based [8, 72] variants
have been proposed, as well as voting filtering. With
voting filtering [24, 44, 11, 78, 10], an instance is re-
moved when all (or almost all) learners in an ensem-
ble agree to remove it. Among other filtering meth-
ods, one may remove the instances that have an abnor-
mally large influence on learning [54, 85], or which
seem suspicious [33]. Many kNN-based methods have
also been proposed (see e.g. [82, 81, 13] for surveys
and comparisons), which are mainly based on heuris-
tics [82, 13, 80, 27]. For example, the reduced near-
est neighbours [27] removes instances whose removal
does not cause other instances to be misclassified.
Also, since AdaBoost tends to give large weights to
mislabelled instances, several approaches use this un-
welcome behaviour to detect label noise [78, 41].

Hughes et al. [36] propose (i) to delete the label of the
instances (and not the instances themselves) for which
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Figure 1: Examples of Tench in the WebVision Dataset

experts are less reliable and (ii) to use semisupervised
learning with both the labelled and the (newly) unla-
belled instances. Surprisingly, this method has only
been used in ECG segmentation; an open research
question is whether it could be applied to other set-
tings.

• Robust Classification Model. From a theoretical
point of view, learning algorithms are seldom com-
pletely robust to label noise [56], except in some sim-
ple cases [71]. However, in practice, some of them
are more robust than others [18, 45]. For example,
bagging achieves better results than boosting [16] and
several boosting methods are known to be more robust
than AdaBoost [64, 66, 65]. For decision trees, the
choice of the node splitting criterion can improve label
noise-robustness [1]. In general, robust methods rely
on overfitting avoidance to handle label noise [77].

• Robust Training Methods. In the probabilistic com-
munity, some authors claim that detecting label noise
is impossible without making assumptions [22, 40,
75]. For example, [22] reports a probabilistic model
taking label noise into account for which there is
an infinite number of maximum likelihood solutions.
In fact, for such identifiability issues [75], prior in-
formation is necessary to break ties. Bayesian pri-
ors on the mislabelling probabilities [40, 21] can be
used, but they should be chosen carefully, for the re-
sults obtained depend on the quality of the prior dis-
tribution [48]. Beta priors [40, 21, 39, 30, 68, 12]
and Dirichlet priors [70, 53] are common choices;
Bayesian methods exist for logistic regression [12, 2,
61, 28], hidden Markov models [26] and graphical
models [42]. Other approaches [69, 32, 68] are based
on indicators which tell whether a given label has been
flipped.

Frequentist methods also exist to deal with label
noise. A simple solution consists in using a mixture
of a normal distribution and an anomalous distribu-
tion [55]. The latter is usually a uniform distribution

on the instance domain, but other choices are possi-
ble. Lawrence et al. [49] have proposed a generative
probabilistic model to deal with label noise. First,
the true labels Y are drawn from a prior distribution
pY . Then, the feature values are drawn from the
conditional distribution pX|Y and the observed labels
Ỹ from the conditional distribution pỸ |Y . The fea-
ture values and the observed labels are known, but the
(hidden) true labels have to be inferred from the data.
For example, Lawrence et al. [49] derive an EM algo-
rithm to learn a Fisher discriminant while inferring the
true labels. This has been extended to non-Gaussian
conditional class distributions [51], multi-class prob-
lems [4], sequential data [19] and mutual information
estimation [20]. Discriminative classifiers equipped
with label noise probabilities have also been devised
in [5, 6]. The model-based treatment of label noise
is quite intuitive, however a theoretical analysis of the
resulting algorithms is still in its infancy [7]. Instead,
guarantees for risk minimisation under random label
noise [62] lead to different procedures to modify a
given loss function and obtain new noise-tolerant al-
gorithms. Clustering can be used to detect mislabelled
instances [67, 9], under the assumption that instances
whose label is not consistent with the label of nearby
clusters are likely to be mislabelled. An other solu-
tion consists in using belief functions [14, 15], since
they allow modelling the confidence of the expert in
its labels. When this information is not provided by
the expert, several approaches have been proposed to
infer beliefs directly from data [14, 15, 84]. Several
other non-probabilistic models have been modified to
become label noise-tolerant. For example, one can pre-
vent instances to take too large weights in neural net-
works [47, 50, 43], support vector machines[25, 52]
and ensembles obtained with boosting[17, 63, 29, 7].
Robust losses [59, 46, 83, 58, 73, 57] can also be used,
and are theoretically shown to be less sensitive to out-
liers.
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3. Our Approach

In order to train a classifier using noisy web data, we
proposed a series of training and testing proceedure that
are robust to dataset noise as shown in Figure 2. When
training, the common training proceedure (in orange box)
is firstly applied several iterations, followed by the boot-
strapping proceedure (in greed box), which aims to clean
the original noisy dataset. The two proceedures run alter-
nately. When testing, several trained classifier are ensem-
bled to make the final predition.

3.1. Re-sampling

We notice that WebVision training dataset suffers from
category bias. The number of images per category of We-
bVision training dataset is shown in the Figure 3, which
varies from several hundreds to more than 10,000.

In order to overcome dataset bias problem, we re-sample
the dataset to guarantee that images of every class has the
same probability to be sampled during training.

3.2. Data Augmentation

We use the following data augmentation method when
training and testing our approach.

1. Scale and aspect ratio augmentation [76]

2. Color augmentation [35]

3. Multiple crop augmentation [76] (only when testing)

3.3. Base Model

We use ResNet-50, ResNet-152 and Inception-ResNet-
v2 as our base classifier model.

3.4. Robust Loss

In order to enhance the discriminative power of deeply
learned features, we investigate center loss proposed
by [79], as formulated in Equation 1.

LC =
1

2

N∑
i=1

‖f (xi)− cyi
‖22 (1)

where xi denotes the i-th image in dataset, f(xi) ∈ <d

denotes deep feature of i-th image, cyi
∈ <d denotes the

yith class center of deep embedded features.
We perform the update based on mini-batch. In each it-

eration, the centers are computed by averaging the features
of the corresponding classes. To Avoid large perturbations
caused by few mislabeled samples, we use a scale α to con-
trol the learning rate of the centers. The gradient of LC

with respect to xi and update equation of centers cyi are
computed as

∂LC

∂xi
= xi − cyi

(2)

∆cyi
=

∑m
i=1 δ(yi = j) · (cj − xi)
1 +

∑m
i=1 δ(yi = j)

(3)

where δ(condition) = 1 if the condition is satisfied, and
δ(condition) = 0 if not.

3.5. Bootstrapping

We can use the prediction of base classifiers to find the
potentially false label. The Bootstrapping algorithm is as
follows

Input: training set
initialize an empty label mask table
foreach image in training set do

predict label for the image
if predicted label equals to image label then

set mask label to image label
else

if predicted probobality greater than a
threshold then

set mask label to predicted label
else

set mask label to minus one
end

end
end
Output: label mask table

Algorithm 1: Bootstrapping Method

3.6. Model Ensemble

We noticed that if we train the same base classifier sev-
eral times, their overall performance is similar, but their per-
formance on each class slightly varies.

We can use multiple base classifiers to predict labels for
each image when testing. This is called model ensemble.
For now, we just simply average the output probabilities
throughout all classifiers.

4. Experiments

We trained a ResNet152 classifier for one week, and sets
learning rate to the initial learning rate decayed by 10 every
10 epochs. For now (28 epoch), The top-1 (and top-5) ac-
curacies are 71.208%(88.860%) without ensemble, single
crop, single bootstrapping. Baseline1 is 58.98%(79.30%).

1Baseline: train the AlexNet models on this training set from scratch.
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(a) Training proceedure (b) Testing proceedure

Figure 2: Proposed training and testing proceedure

Figure 3: The number of images per category in the WebVision training dataset.
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[47] W. Krauth and M. Mézard. Learning algorithms with opti-
mal stability in neural networks. Journal of Physics A: Math-
ematical and General, 20(11):L745, 1987.

[48] M. Ladouceur, E. Rahme, C. A. Pineau, and L. Joseph. Ro-
bustness of prevalence estimates derived from misclassified
data from administrative databases. Biometrics, 63(1):272–
279, 2007.

[49] N. D. Lawrence and B. Schölkopf. Estimating a kernel fisher
discriminant in the presence of label noise. In ICML, vol-
ume 1, pages 306–313. Citeseer, 2001.

[50] Y. Li and P. M. Long. The relaxed online maximum margin
algorithm. Machine Learning, 46(1-3):361–387, 2002.

[51] Y. Li, L. F. Wessels, D. de Ridder, and M. J. Reinders. Clas-
sification in the presence of class noise using a probabilis-
tic kernel fisher method. Pattern Recognition, 40(12):3349–
3357, 2007.

[52] C.-f. Lin et al. Training algorithms for fuzzy support vec-
tor machines with noisy data. Pattern recognition letters,
25(14):1647–1656, 2004.

[53] J. Liu, P. Gustafson, N. Cherry, and I. Burstyn. Bayesian
analysis of a matched case–control study with expert prior
information on both the misclassification of exposure and
the exposure–disease association. Statistics in medicine,
28(27):3411–3423, 2009.

[54] A. Malossini, E. Blanzieri, and R. T. Ng. Detecting potential
labeling errors in microarrays by data perturbation. Bioinfor-
matics, 22(17):2114–2121, 2006.

[55] Y. Mansour and M. Parnas. Learning conjunctions with noise
under product distributions. Information Processing Letters,
68(4):189–196, 1998.

[56] N. Manwani and P. Sastry. Noise tolerance under risk min-
imization. IEEE transactions on cybernetics, 43(3):1146–
1151, 2013.

[57] H. Masnadi-Shirazi, V. Mahadevan, and N. Vasconcelos. On
the design of robust classifiers for computer vision. In Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 779–786. IEEE, 2010.

[58] H. Masnadi-Shirazi and N. Vasconcelos. On the design of
loss functions for classification: theory, robustness to out-
liers, and savageboost. In Advances in neural information
processing systems, pages 1049–1056, 2009.

[59] L. Mason, J. Baxter, P. L. Bartlett, M. Frean, et al. Functional
gradient techniques for combining hypotheses. Advances
in Neural Information Processing Systems, pages 221–246,
1999.

[60] N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik.
Computer aided cleaning of large databases for character
recognition. In Pattern Recognition, 1992. Vol. II. Con-
ference B: Pattern Recognition Methodology and Systems,
Proceedings., 11th IAPR International Conference on, pages
330–333. IEEE, 1992.

[61] P. McInturff, W. O. Johnson, D. Cowling, and I. A. Gardner.
Modelling risk when binary outcomes are subject to error.
Statistics in medicine, 23(7):1095–1109, 2004.

[62] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari.
Learning with noisy labels. In Advances in neural informa-
tion processing systems, pages 1196–1204, 2013.

[63] N. C. Oza. Aveboost2: Boosting for noisy data. In Interna-
tional Workshop on Multiple Classifier Systems, pages 31–
40. Springer, 2004.
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